Source code for joeynmt.prediction

# coding: utf-8
"""
This module holds methods for generating predictions from a model.
"""
import math
import sys
import time
from itertools import zip_longest
from pathlib import Path
from typing import Dict, List, Optional, Tuple

import numpy as np
import torch
from torch.nn import DataParallel as DP
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import Dataset
from tqdm import tqdm

from joeynmt.config import (
    BaseConfig,
    TestConfig,
    parse_global_args,
    set_validation_args,
)
from joeynmt.data import load_data
from joeynmt.datasets import StreamDataset
from joeynmt.helpers import (
    expand_reverse_index,
    load_checkpoint,
    resolve_ckpt_path,
    save_hypothese,
    set_seed,
    store_attention_plots,
    write_list_to_file,
)
from joeynmt.helpers_for_ddp import (
    ddp_merge,
    ddp_reduce,
    ddp_synchronize,
    get_logger,
    use_ddp,
)
from joeynmt.metrics import bleu, chrf, sequence_accuracy, token_accuracy
from joeynmt.model import DataParallelWrapper, Model, build_model
from joeynmt.search import search

logger = get_logger(__name__)


[docs] def predict( model: Model, data: Dataset, device: torch.device, n_gpu: int, rank: int = 0, compute_loss: bool = False, normalization: str = "batch", num_workers: int = 0, args: TestConfig = None, autocast: Dict = None, ) -> Tuple[Dict[str, float], Optional[List[str]], Optional[List[str]], List[List[str]], List[np.ndarray], List[np.ndarray]]: """ Generates translations for the given data. If `compute_loss` is True and references are given, also computes the loss. :param model: model module :param data: dataset for validation :param device: torch device :param n_gpu: number of GPUs :param rank: ddp rank :param compute_loss: whether to compute a scalar loss for given inputs and targets :param normalization: one of {`batch`, `tokens`, `none`} :param num_workers: number of workers for `collate_fn()` in data iterator :param args: configuration args :param autocast: autocast context :return: - valid_scores: (dict) current validation scores, - valid_ref: (list of str) post-processed validation references, - valid_hyp: (list of str) post-processed validation hypotheses, - decoded_valid: (list of list of str) token-level validation hypotheses, - valid_seq_scores: (list of np.array) log probabilities (hyp or ref) - valid_attn_scores: (list of np.array) attention scores (hyp or ref) """ # pylint: disable=too-many-branches,too-many-statements if use_ddp(): if args.batch_type == "token": logger.warning( "Token-based batch sampling is not supported in distributed " "learning. fall back to sentence-based batch sampling." ) args = args._replace(batch_type="sentence", batch_size=64) if args.beam_size > 1: logger.warning( "Beam search is not supported in distributed learning. " "fall back to greedy decoding." ) args = set_validation_args(args) else: # DataParallel distributes batch sequences over devices assert args.batch_size >= n_gpu, "`batch_size` must be bigger than `n_gpu`." # **CAUTION:** a batch will be expanded to batch.nseqs * beam_size, and it might # cause an out-of-memory error. # if batch_size > beam_size: # batch_size //= beam_size valid_iter = data.make_iter( batch_size=args.batch_size, batch_type=args.batch_type, shuffle=False, seed=data.seed, # for subsampling (not for shuffling) num_workers=num_workers, eos_index=model.eos_index, pad_index=model.pad_index, device=device, ) num_samples = valid_iter.batch_sampler.num_samples # log decoding configs if args.return_prob == "ref": # no decoding needed decoding_description = "" else: decoding_description = ( # write the decoding strategy in the log " (Greedy decoding with " if args.beam_size < 2 else f" (Beam search with beam_size={args.beam_size}, " f"beam_alpha={args.beam_alpha}, n_best={args.n_best}, ") decoding_description += ( f"min_output_length={args.min_output_length}, " f"max_output_length={args.max_output_length}, " f"return_prob='{args.return_prob}', generate_unk={args.generate_unk}, " f"repetition_penalty={args.repetition_penalty}, " f"no_repeat_ngram_size={args.no_repeat_ngram_size})" ) logger.info("Predicting %d example(s)...%s", num_samples, decoding_description) # disable dropout model.eval() # placeholders for scores # Note: access these variables only when rank == 0 valid_scores = {"loss": float("nan"), "acc": float("nan"), "ppl": float("nan")} all_outputs, all_indices, valid_attn_scores, valid_seq_scores = [], [], [], [] total_loss, total_nseqs, total_ntokens, total_n_correct = 0, 0, 0, 0 output, ref_scores, hyp_scores, attention_scores = None, None, None, None ddp_synchronize() # ensure that all processes are ready gen_start_time = time.time() disable_tqdm = isinstance(data, StreamDataset) or rank != 0 with tqdm(total=num_samples, disable=disable_tqdm, desc="Predicting...") as pbar: for batch in valid_iter: # number of sentences in the current batch # = batch.nseqs * n_gpu if use_ddp() batch_nseqs = ddp_reduce(batch.nseqs, device, torch.long).item() # sort batch now by src length and keep track of order reverse_index = batch.sort_by_src_length() sort_reverse_index = expand_reverse_index(reverse_index, args.n_best) batch_size = len(sort_reverse_index) # = batch.nseqs * args.n_best # run as during training to get validation loss (e.g. xent) if compute_loss and batch.has_trg: assert model.loss_function is not None # don't track gradients during validation with torch.autocast(**autocast): with torch.no_grad(): batch_loss, log_probs, attn, n_correct = model( return_type="loss", return_prob=args.return_prob, return_attention=args.return_attention, **vars(batch) ) # gather batch_loss = ddp_reduce(batch_loss) n_correct = ddp_reduce(n_correct) batch_ntokens = ddp_reduce(batch.ntokens, device, torch.long) # sum over multiple gpus batch_loss = batch.normalize(batch_loss, "sum", n_gpu=n_gpu) n_correct = batch.normalize(n_correct, "sum", n_gpu=n_gpu) if args.return_prob == "ref": # gather log_probs = ddp_merge(log_probs, 0.0) attn = ddp_merge(attn, 0.0) batch_trg = ddp_merge(batch.trg, model.pad_index) ref_scores = batch.score(log_probs, batch_trg, model.pad_index) attention_scores = attn.detach().cpu().numpy() output = batch_trg.detach().cpu().numpy() if rank == 0: total_loss += batch_loss.item() total_n_correct += n_correct.item() total_ntokens += batch_ntokens.item() # if return_prob == "ref", then no search needed. # (just look up the prob of the ground truth.) if args.return_prob != "ref": # run search as during inference to produce translations output, hyp_scores, attention_scores = search( model=model, batch=batch, beam_size=args.beam_size, beam_alpha=args.beam_alpha, max_output_length=args.max_output_length, n_best=args.n_best, return_attention=args.return_attention, return_prob=args.return_prob, generate_unk=args.generate_unk, repetition_penalty=args.repetition_penalty, no_repeat_ngram_size=args.no_repeat_ngram_size, autocast=autocast, ) if use_ddp(): # we don't know the order of merged outputs. # sort them back by indices after the batch loop has ended. batch_indices = ddp_merge(batch.indices.unsqueeze(1), -1).squeeze() assert torch.all(batch_indices >= 0).item(), batch_indices assert len(batch_indices) == len(output) == batch_nseqs if rank == 0: all_outputs.extend(output) all_indices.extend(batch_indices.detach().cpu().numpy()) else: # sort outputs back to original order all_outputs.extend(output[sort_reverse_index]) # either hyp or ref valid_attn_scores.extend( attention_scores[sort_reverse_index] if attention_scores is not None else [] ) valid_seq_scores.extend( ref_scores[sort_reverse_index] \ if ref_scores is not None and ref_scores.shape[0] == batch_size else hyp_scores[sort_reverse_index] \ if hyp_scores is not None and hyp_scores.shape[0] == batch_size else []) if rank == 0: total_nseqs += batch_nseqs pbar.update(batch_nseqs) gen_duration = time.time() - gen_start_time logger.info("Generation took %.4f[sec].", gen_duration) if rank == 0: if use_ddp(): num_samples = valid_iter.batch_sampler.num_samples # sort back to the original order according to `all_indices` _all_outputs = [None] * len(data) # not len(all_outputs)! for i, row in zip(all_indices, all_outputs): _all_outputs[i] = row all_outputs = [out for out in _all_outputs if out is not None] assert total_nseqs == num_samples, (total_nseqs, num_samples) assert len(all_outputs ) == num_samples * args.n_best, (len(all_outputs), num_samples) if compute_loss: if normalization == "batch": normalizer = total_nseqs elif normalization == "tokens": normalizer = total_ntokens elif normalization == "none": normalizer = 1 # avoid zero division assert normalizer > 0, normalizer assert total_ntokens > 0, total_ntokens # normalized loss valid_scores["loss"] = total_loss / normalizer # accuracy before decoding valid_scores["acc"] = total_n_correct / total_ntokens # exponent of token-level negative log likelihood valid_scores["ppl"] = math.exp(total_loss / total_ntokens) # decode ids back to str symbols (cut-off AFTER eos; eos itself is included.) decoded_valid = model.trg_vocab.arrays_to_sentences( arrays=all_outputs, cut_at_eos=True ) # TODO: `valid_seq_scores` should have the same seq length as `decoded_valid` # -> needed to be cut-off at eos/sep synchronously if args.return_prob == "ref": # no evaluation needed logger.info( "Evaluation result (scoring) %s.", ", ".join([ f"{eval_metric}: {valid_scores[eval_metric]:6.2f}" for eval_metric in ["loss", "ppl", "acc"] ]) ) return ( valid_scores, None, None, decoded_valid, valid_seq_scores, valid_attn_scores ) # retrieve detokenized hypotheses valid_hyp = [] for i, sentence in enumerate(decoded_valid): try: sentence = data.tokenizer[data.trg_lang].post_process( sentence, generate_unk=args.generate_unk, cut_at_sep=True ) except AssertionError as e: logger.error("empty hypothesis at %d: %r (%r)", i, sentence, e) # pylint: disable=protected-access sentence = model.trg_vocab._itos[model.unk_index] valid_hyp.append(sentence) assert len(valid_hyp) == len(all_outputs), (len(valid_hyp), len(all_outputs)) # if references are given, compute evaluation metrics if data.has_trg: valid_scores, valid_ref = evaluate(valid_scores, valid_hyp, data, args) else: valid_ref = None # no references return ( valid_scores, valid_ref, valid_hyp, decoded_valid, valid_seq_scores, valid_attn_scores, ) if rank == 0 else None
[docs] def evaluate(valid_scores: Dict, valid_hyp: List, data: Dataset, args: TestConfig) -> Tuple[Dict[str, float], List[str]]: """ Compute evaluateion metrics :param valid_scores: scores dict :param valid_hyp: decoded hypotheses :param data: eval Dataset :param args: configuration args :return: - valid_scores: evaluation scores - valid_ref: postprocessed references """ # references are not length-filtered, not duplicated for n_best > 1 valid_ref = [data.tokenizer[data.trg_lang].post_process(t) for t in data.trg] # metrics are computed on the 1-best hypotheses valid_hyp_1best = [valid_hyp[i] for i in range(0, len(valid_hyp), args.n_best)] \ if args.n_best > 1 else valid_hyp assert len(valid_hyp_1best) == len(valid_ref), (valid_hyp_1best, valid_ref) eval_start_time = time.time() # evaluate with metrics on dev dataset for eval_metric in args.eval_metrics: if eval_metric == "bleu": valid_scores[eval_metric] = bleu( valid_hyp_1best, valid_ref, **args.sacrebleu_cfg ) elif eval_metric == "chrf": valid_scores[eval_metric] = chrf( valid_hyp_1best, valid_ref, **args.sacrebleu_cfg ) elif eval_metric == "token_accuracy": valid_scores[eval_metric] = token_accuracy( valid_hyp_1best, valid_ref, data.tokenizer[data.trg_lang] ) elif eval_metric == "sequence_accuracy": valid_scores[eval_metric] = sequence_accuracy(valid_hyp_1best, valid_ref) eval_duration = time.time() - eval_start_time score_str = ", ".join([ f"{eval_metric}: {valid_scores[eval_metric]:6.2f}" for eval_metric in args.eval_metrics + ["loss", "ppl", "acc"] if not math.isnan(valid_scores[eval_metric]) ]) logger.info( "Evaluation result (%s): %s, %.4f[sec]", "beam search" if args.beam_size > 1 else "greedy", score_str, eval_duration, ) return valid_scores, valid_ref
[docs] def prepare(args: BaseConfig, rank: int, mode: str) -> Tuple[Model, Dataset, Dataset, Dataset]: """ Helper function for model and data loading. :param args: config args :param rank: ddp rank :param mode: execution mode """ # load the data if mode == "train": datasets = ["train", "dev", "test"] if mode == "test": datasets = ["dev", "test"] if mode == "translate": datasets = ["stream"] if mode != "train": if "voc_file" not in args.data["src"] or not args.data["src"]["voc_file"]: args.data["src"]["voc_file"] = (args.model_dir / "src_vocab.txt").as_posix() if "voc_file" not in args.data["trg"] or not args.data["trg"]["voc_file"]: args.data["trg"]["voc_file"] = (args.model_dir / "trg_vocab.txt").as_posix() src_vocab, trg_vocab, train_data, dev_data, test_data = load_data( cfg=args.data, datasets=datasets ) if mode == "train" and rank == 0: # store the vocabs and tokenizers src_vocab.to_file(args.model_dir / "src_vocab.txt") if hasattr(train_data.tokenizer[train_data.src_lang], "copy_cfg_file"): train_data.tokenizer[train_data.src_lang].copy_cfg_file(args.model_dir) trg_vocab.to_file(args.model_dir / "trg_vocab.txt") if hasattr(train_data.tokenizer[train_data.trg_lang], "copy_cfg_file"): train_data.tokenizer[train_data.trg_lang].copy_cfg_file(args.model_dir) # build an encoder-decoder model model = build_model(args.model, src_vocab=src_vocab, trg_vocab=trg_vocab) model.log_parameters_list() # need to instantiate loss func after `build_model()` model.loss_function = (args.train.loss, args.train.label_smoothing) if mode != "train": # infer ckpt path for testing ckpt = resolve_ckpt_path(args.test.load_model, args.model_dir) # load model checkpoint logger.info("Loading model from %s", ckpt) map_location = {"cuda:0": f"cuda:{rank}"} if use_ddp() else args.device model_checkpoint = load_checkpoint(ckpt, map_location=map_location) # restore model and optimizer parameters model.load_state_dict(model_checkpoint["model_state"]) # move to gpu if args.device.type == "cuda": model.to(args.device) # multi-gpu training if args.n_gpu > 1: if use_ddp(): model = DataParallelWrapper( DDP(model, device_ids=[rank], output_device=rank) ) else: model = DataParallelWrapper(DP(model)) logger.info(model) # set the random seed set_seed(seed=args.seed) return model, train_data, dev_data, test_data
[docs] def test( cfg: Dict, output_path: str = None, prepared: Dict = None, save_attention: bool = False, save_scores: bool = False, ) -> None: """ Main test function. Handles loading a model from checkpoint, generating translations, storing them, and plotting attention. :param cfg: configuration dict :param output_path: path to output :param prepared: model and datasets passed from training :param save_attention: whether to save attention visualizations :param save_scores: whether to save scores """ # parse args args = parse_global_args(cfg, rank=0, mode="test") # load the model and data if prepared is None: model, _, dev_data, test_data = prepare(args, rank=0, mode="test") data_to_predict = {"dev": dev_data, "test": test_data} else: # avoid to load model and data again model = prepared["model"] data_to_predict = {"dev": prepared["dev"], "test": prepared["test"]} # check options if save_attention: if cfg["model"]["decoder"]["type"] == "transformer": assert cfg["testing"].get("beam_size", 1) == 1, ( "Attention plots can be saved with greedy decoding only. Please set " "`beam_size: 1` in the config." ) args = args._replace(test=args.test._replace(return_attention=True)) if save_scores: assert output_path, "Please specify --output_path for saving scores." if args.test.return_prob == "none": logger.warning( "Please specify prob type: {`ref` or `hyp`} in the config. " "Scores will not be saved." ) save_scores = False elif args.test.return_prob == "ref": assert cfg["testing"].get("beam_size", 1) == 1, ( "Scores of given references can be computed with greedy decoding only. " "Please set `beam_size: 1` in the config." ) # prediction loop over datasets for data_set_name, data_set in data_to_predict.items(): if data_set is not None: data_set.reset_indices(random_subset=-1) # no subsampling in evaluation logger.info( "%s on %s set... (device: %s, n_gpu: %s, use_ddp: %r, fp16: %r)", "Scoring" if args.test.return_prob == "ref" else "Decoding", data_set_name, args.device.type, args.n_gpu, use_ddp(), args.autocast["enabled"] ) _, _, hypotheses, hypotheses_raw, seq_scores, att_scores, = predict( model=model, data=data_set, compute_loss=args.test.return_prob == "ref", device=args.device, rank=0, n_gpu=args.n_gpu, num_workers=args.num_workers, normalization=args.train.normalization, args=args.test, autocast=args.autocast, ) if save_attention: if att_scores: attention_file_name = f"{output_path}.{data_set_name}.att" logger.info("Saving attention plots. This might take a while..") store_attention_plots( attentions=att_scores, targets=hypotheses_raw, sources=data_set.get_list( lang=data_set.src_lang, tokenized=True ), indices=range(len(hypotheses)), output_prefix=attention_file_name, ) logger.info("Attention plots saved to: %s", attention_file_name) else: logger.warning( "Attention scores could not be saved. Note that attention " "scores are not available when using beam search. " "Set beam_size to 1 for greedy decoding." ) if output_path is not None: if save_scores and seq_scores is not None: # save scores output_path_scores = Path(f"{output_path}.{data_set_name}.scores") write_list_to_file(output_path_scores, seq_scores) # save tokens output_path_tokens = Path(f"{output_path}.{data_set_name}.tokens") write_list_to_file(output_path_tokens, hypotheses_raw) logger.info( "Scores and corresponding tokens saved to: %s.{scores|tokens}", f"{output_path}.{data_set_name}", ) if hypotheses is not None: # save translations output_path_set = Path(f"{output_path}.{data_set_name}") save_hypothese(output_path_set, hypotheses, args.test.n_best) logger.info("Translations saved to: %s.", output_path_set)
[docs] def translate(cfg: Dict, output_path: str = None) -> None: """ Interactive translation function. Loads model from checkpoint and translates either the stdin input or asks for input to translate interactively. Translations and scores are printed to stdout. Note: The input sentences don't have to be pre-tokenized. :param cfg: configuration dict :param output_path: path to output file """ # parse args args = parse_global_args(cfg, rank=0, mode="translate") # load the model model, _, _, test_data = prepare(args, rank=0, mode="translate") assert isinstance(test_data, StreamDataset) logger.info( "Ready to decode. (device: %s, n_gpu: %s, use_ddp: %r, fp16: %r)", args.device.type, args.n_gpu, use_ddp(), args.autocast["enabled"] ) def _translate_data(test_data: Dataset, args: BaseConfig): """Translates given dataset, using parameters from outer scope.""" _, _, hypotheses, trg_tokens, trg_scores, _ = predict( model=model, data=test_data, compute_loss=False, device=args.device, rank=0, n_gpu=args.n_gpu, normalization="none", num_workers=args.num_workers, args=args.test, autocast=args.autocast, ) return hypotheses, trg_tokens, trg_scores if not sys.stdin.isatty(): # pylint: disable=too-many-nested-blocks # input stream given for i, line in enumerate(sys.stdin.readlines()): if not line.strip(): # skip empty lines and print warning logger.warning("The sentence in line %d is empty. Skip to load.", i) continue test_data.set_item(line.rstrip()) all_hypotheses, tokens, scores = _translate_data(test_data, args) assert len(all_hypotheses) == len(test_data) * args.test.n_best if output_path is not None: # write to outputfile if given out_file = Path(output_path).expanduser() save_hypothese(out_file, all_hypotheses, args.n_best) logger.info("Translations saved to: %s.", out_file) else: # print to stdout for hyp in all_hypotheses: print(hyp) else: # CAUTION: this will raise an error if n_gpus > 1 args = args._replace( test=args.test._replace(batch_size=1, batch_type="sentence") ) # enter interactive mode np.set_printoptions(linewidth=sys.maxsize) # for printing scores in stdout while True: try: src_input = input("\nPlease enter a source sentence:\n") if not src_input.strip(): break # every line has to be made into dataset test_data.set_item(src_input.rstrip()) hypotheses, tokens, scores = _translate_data(test_data, args) print("JoeyNMT:") for i, (hyp, token, score) in enumerate(zip_longest(hypotheses, tokens, scores)): assert hyp is not None, (i, hyp, token, score) print(f"#{i + 1}: {hyp}") if args.test.return_prob in ["hyp"]: if args.test.beam_size > 1: # beam search: seq-level scores print(f"\ttokens: {token}\n\tsequence score: {score[0]}") else: # greedy: token-level scores assert len(token) == len(score), (token, score) print(f"\ttokens: {token}\n\tscores: {score}") # reset cache test_data.reset_cache() except (KeyboardInterrupt, EOFError): print("\nBye.") break