Source code for joeynmt.training

# coding: utf-8
"""
Training module
"""

import argparse
import time
import shutil
from typing import List
import logging
import os
import sys
import collections
import pathlib
import numpy as np

import torch
from torch import Tensor
from torch.utils.tensorboard import SummaryWriter

from torchtext.data import Dataset

from joeynmt.model import build_model
from joeynmt.batch import Batch
from joeynmt.helpers import log_data_info, load_config, log_cfg, \
    store_attention_plots, load_checkpoint, make_model_dir, \
    make_logger, set_seed, symlink_update, latest_checkpoint_update, \
    ConfigurationError
from joeynmt.model import Model, _DataParallel
from joeynmt.prediction import validate_on_data
from joeynmt.loss import XentLoss
from joeynmt.data import load_data, make_data_iter
from joeynmt.builders import build_optimizer, build_scheduler, \
    build_gradient_clipper
from joeynmt.prediction import test

# for fp16 training
try:
    from apex import amp
    amp.register_half_function(torch, "einsum")
except ImportError as no_apex:
    # error handling in TrainManager object construction
    pass

logger = logging.getLogger(__name__)


# pylint: disable=too-many-instance-attributes
[docs]class TrainManager: """ Manages training loop, validations, learning rate scheduling and early stopping.""" def __init__(self, model: Model, config: dict, batch_class: Batch = Batch) -> None: """ Creates a new TrainManager for a model, specified as in configuration. :param model: torch module defining the model :param config: dictionary containing the training configurations :param batch_class: batch class to encapsulate the torch class """ train_config = config["training"] self.batch_class = batch_class # files for logging and storing self.model_dir = train_config["model_dir"] assert os.path.exists(self.model_dir) self.logging_freq = train_config.get("logging_freq", 100) self.valid_report_file = "{}/validations.txt".format(self.model_dir) self.tb_writer = SummaryWriter(log_dir=self.model_dir + "/tensorboard/") self.save_latest_checkpoint = train_config.get("save_latest_ckpt", True) # model self.model = model self._log_parameters_list() # objective self.label_smoothing = train_config.get("label_smoothing", 0.0) self.model.loss_function = XentLoss(pad_index=self.model.pad_index, smoothing=self.label_smoothing) self.normalization = train_config.get("normalization", "batch") if self.normalization not in ["batch", "tokens", "none"]: raise ConfigurationError("Invalid normalization option." "Valid options: " "'batch', 'tokens', 'none'.") # optimization self.learning_rate_min = train_config.get("learning_rate_min", 1.0e-8) self.clip_grad_fun = build_gradient_clipper(config=train_config) self.optimizer = build_optimizer(config=train_config, parameters=model.parameters()) # validation & early stopping self.validation_freq = train_config.get("validation_freq", 1000) self.log_valid_sents = train_config.get("print_valid_sents", [0, 1, 2]) self.ckpt_queue = collections.deque( maxlen=train_config.get("keep_last_ckpts", 5)) self.eval_metric = train_config.get("eval_metric", "bleu") if self.eval_metric not in [ 'bleu', 'chrf', 'token_accuracy', 'sequence_accuracy' ]: raise ConfigurationError("Invalid setting for 'eval_metric', " "valid options: 'bleu', 'chrf', " "'token_accuracy', 'sequence_accuracy'.") self.early_stopping_metric = train_config.get("early_stopping_metric", "eval_metric") # early_stopping_metric decides on how to find the early stopping point: # ckpts are written when there's a new high/low score for this metric. # If we schedule after BLEU/chrf/accuracy, we want to maximize the # score, else we want to minimize it. if self.early_stopping_metric in ["ppl", "loss"]: self.minimize_metric = True elif self.early_stopping_metric == "eval_metric": if self.eval_metric in [ "bleu", "chrf", "token_accuracy", "sequence_accuracy" ]: self.minimize_metric = False # eval metric that has to get minimized (not yet implemented) else: self.minimize_metric = True else: raise ConfigurationError( "Invalid setting for 'early_stopping_metric', " "valid options: 'loss', 'ppl', 'eval_metric'.") # eval options test_config = config["testing"] self.bpe_type = test_config.get("bpe_type", "subword-nmt") self.sacrebleu = {"remove_whitespace": True, "tokenize": "13a"} if "sacrebleu" in config["testing"].keys(): self.sacrebleu["remove_whitespace"] = test_config["sacrebleu"] \ .get("remove_whitespace", True) self.sacrebleu["tokenize"] = test_config["sacrebleu"] \ .get("tokenize", "13a") # learning rate scheduling self.scheduler, self.scheduler_step_at = build_scheduler( config=train_config, scheduler_mode="min" if self.minimize_metric else "max", optimizer=self.optimizer, hidden_size=config["model"]["encoder"]["hidden_size"]) # data & batch handling self.level = config["data"]["level"] if self.level not in ["word", "bpe", "char"]: raise ConfigurationError("Invalid segmentation level. " "Valid options: 'word', 'bpe', 'char'.") self.shuffle = train_config.get("shuffle", True) self.epochs = train_config["epochs"] self.batch_size = train_config["batch_size"] # Placeholder so that we can use the train_iter in other functions. self.train_iter = None self.train_iter_state = None # per-device batch_size = self.batch_size // self.n_gpu self.batch_type = train_config.get("batch_type", "sentence") self.eval_batch_size = train_config.get("eval_batch_size", self.batch_size) # per-device eval_batch_size = self.eval_batch_size // self.n_gpu self.eval_batch_type = train_config.get("eval_batch_type", self.batch_type) self.batch_multiplier = train_config.get("batch_multiplier", 1) # generation self.max_output_length = train_config.get("max_output_length", None) # CPU / GPU self.use_cuda = train_config["use_cuda"] and torch.cuda.is_available() self.n_gpu = torch.cuda.device_count() if self.use_cuda else 0 self.device = torch.device("cuda" if self.use_cuda else "cpu") if self.use_cuda: self.model.to(self.device) # fp16 self.fp16 = train_config.get("fp16", False) if self.fp16: if 'apex' not in sys.modules: raise ImportError("Please install apex from " "https://www.github.com/nvidia/apex " "to use fp16 training.") from no_apex self.model, self.optimizer = amp.initialize(self.model, self.optimizer, opt_level='O1') # opt level: one of {"O0", "O1", "O2", "O3"} # see https://nvidia.github.io/apex/amp.html#opt-levels # initialize training statistics self.stats = self.TrainStatistics( steps=0, stop=False, total_tokens=0, best_ckpt_iter=0, best_ckpt_score=np.inf if self.minimize_metric else -np.inf, minimize_metric=self.minimize_metric) # model parameters if "load_model" in train_config.keys(): self.init_from_checkpoint( train_config["load_model"], reset_best_ckpt=train_config.get("reset_best_ckpt", False), reset_scheduler=train_config.get("reset_scheduler", False), reset_optimizer=train_config.get("reset_optimizer", False), reset_iter_state=train_config.get("reset_iter_state", False)) # multi-gpu training (should be after apex fp16 initialization) if self.n_gpu > 1: self.model = _DataParallel(self.model) def _save_checkpoint(self, new_best: bool = True) -> None: """ Save the model's current parameters and the training state to a checkpoint. The training state contains the total number of training steps, the total number of training tokens, the best checkpoint score and iteration so far, and optimizer and scheduler states. :param new_best: This boolean signals which symlink we will use for the new checkpoint. If it is true, we update best.ckpt, else latest.ckpt. """ model_path = os.path.join(self.model_dir, "{}.ckpt".format(self.stats.steps)) model_state_dict = self.model.module.state_dict() \ if isinstance(self.model, torch.nn.DataParallel) \ else self.model.state_dict() state = { "steps": self.stats.steps, "total_tokens": self.stats.total_tokens, "best_ckpt_score": self.stats.best_ckpt_score, "best_ckpt_iteration": self.stats.best_ckpt_iter, "model_state": model_state_dict, "optimizer_state": self.optimizer.state_dict(), "scheduler_state": self.scheduler.state_dict() if self.scheduler is not None else None, 'amp_state': amp.state_dict() if self.fp16 else None, "train_iter_state": self.train_iter.state_dict() } torch.save(state, model_path) symlink_target = "{}.ckpt".format(self.stats.steps) if new_best: if len(self.ckpt_queue) == self.ckpt_queue.maxlen: to_delete = self.ckpt_queue.popleft() # delete oldest ckpt try: os.remove(to_delete) except FileNotFoundError: logger.warning( "Wanted to delete old checkpoint %s but " "file does not exist.", to_delete) self.ckpt_queue.append(model_path) best_path = "{}/best.ckpt".format(self.model_dir) try: # create/modify symbolic link for best checkpoint symlink_update(symlink_target, best_path) except OSError: # overwrite best.ckpt torch.save(state, best_path) if self.save_latest_checkpoint: last_path = "{}/latest.ckpt".format(self.model_dir) previous_path = latest_checkpoint_update(symlink_target, last_path) # If the last ckpt is in the ckpt_queue, we don't want to delete it. can_delete = True for ckpt_path in self.ckpt_queue: if pathlib.Path(ckpt_path).resolve() == previous_path: can_delete = False break if can_delete and previous_path is not None: os.remove(previous_path)
[docs] def init_from_checkpoint(self, path: str, reset_best_ckpt: bool = False, reset_scheduler: bool = False, reset_optimizer: bool = False, reset_iter_state: bool = False) -> None: """ Initialize the trainer from a given checkpoint file. This checkpoint file contains not only model parameters, but also scheduler and optimizer states, see `self._save_checkpoint`. :param path: path to checkpoint :param reset_best_ckpt: reset tracking of the best checkpoint, use for domain adaptation with a new dev set or when using a new metric for fine-tuning. :param reset_scheduler: reset the learning rate scheduler, and do not use the one stored in the checkpoint. :param reset_optimizer: reset the optimizer, and do not use the one stored in the checkpoint. :param reset_iter_state: reset the sampler's internal state and do not use the one stored in the checkpoint. """ logger.info("Loading model from %s", path) model_checkpoint = load_checkpoint(path=path, use_cuda=self.use_cuda) # restore model and optimizer parameters self.model.load_state_dict(model_checkpoint["model_state"]) if not reset_optimizer: self.optimizer.load_state_dict(model_checkpoint["optimizer_state"]) else: logger.info("Reset optimizer.") if not reset_scheduler: if model_checkpoint["scheduler_state"] is not None and \ self.scheduler is not None: self.scheduler.load_state_dict( model_checkpoint["scheduler_state"]) else: logger.info("Reset scheduler.") # restore counts self.stats.steps = model_checkpoint["steps"] self.stats.total_tokens = model_checkpoint["total_tokens"] if not reset_best_ckpt: self.stats.best_ckpt_score = model_checkpoint["best_ckpt_score"] self.stats.best_ckpt_iter = model_checkpoint["best_ckpt_iteration"] else: logger.info("Reset tracking of the best checkpoint.") if (not reset_iter_state and model_checkpoint.get('train_iter_state', None) is not None): self.train_iter_state = model_checkpoint["train_iter_state"] # move parameters to cuda if self.use_cuda: self.model.to(self.device) # fp16 if self.fp16 and model_checkpoint.get("amp_state", None) is not None: amp.load_state_dict(model_checkpoint['amp_state'])
# pylint: disable=unnecessary-comprehension # pylint: disable=too-many-branches # pylint: disable=too-many-statements
[docs] def train_and_validate(self, train_data: Dataset, valid_data: Dataset) \ -> None: """ Train the model and validate it from time to time on the validation set. :param train_data: training data :param valid_data: validation data """ self.train_iter = make_data_iter(train_data, batch_size=self.batch_size, batch_type=self.batch_type, train=True, shuffle=self.shuffle) if self.train_iter_state is not None: self.train_iter.load_state_dict(self.train_iter_state) ################################################################# # simplify accumulation logic: ################################################################# # for epoch in range(epochs): # self.model.zero_grad() # epoch_loss = 0.0 # batch_loss = 0.0 # for i, batch in enumerate(iter(self.train_iter)): # # # gradient accumulation: # # loss.backward() inside _train_step() # batch_loss += self._train_step(inputs) # # if (i + 1) % self.batch_multiplier == 0: # self.optimizer.step() # update! # self.model.zero_grad() # reset gradients # self.steps += 1 # increment counter # # epoch_loss += batch_loss # accumulate batch loss # batch_loss = 0 # reset batch loss # # # leftovers are just ignored. ################################################################# logger.info( "Train stats:\n" "\tdevice: %s\n" "\tn_gpu: %d\n" "\t16-bits training: %r\n" "\tgradient accumulation: %d\n" "\tbatch size per device: %d\n" "\ttotal batch size (w. parallel & accumulation): %d", self.device, self.n_gpu, self.fp16, self.batch_multiplier, self.batch_size // self.n_gpu if self.n_gpu > 1 else self.batch_size, self.batch_size * self.batch_multiplier) for epoch_no in range(self.epochs): logger.info("EPOCH %d", epoch_no + 1) if self.scheduler is not None and self.scheduler_step_at == "epoch": self.scheduler.step(epoch=epoch_no) self.model.train() # Reset statistics for each epoch. start = time.time() total_valid_duration = 0 start_tokens = self.stats.total_tokens self.model.zero_grad() epoch_loss = 0 batch_loss = 0 for i, batch in enumerate(iter(self.train_iter)): # create a Batch object from torchtext batch batch = self.batch_class(batch, self.model.pad_index, use_cuda=self.use_cuda) # get batch loss batch_loss += self._train_step(batch) # update! if (i + 1) % self.batch_multiplier == 0: # clip gradients (in-place) if self.clip_grad_fun is not None: if self.fp16: self.clip_grad_fun( params=amp.master_params(self.optimizer)) else: self.clip_grad_fun(params=self.model.parameters()) # make gradient step self.optimizer.step() # decay lr if self.scheduler is not None \ and self.scheduler_step_at == "step": self.scheduler.step() # reset gradients self.model.zero_grad() # increment step counter self.stats.steps += 1 # log learning progress if self.stats.steps % self.logging_freq == 0: self.tb_writer.add_scalar("train/train_batch_loss", batch_loss, self.stats.steps) elapsed = time.time() - start - total_valid_duration elapsed_tokens = self.stats.total_tokens - start_tokens logger.info( "Epoch %3d, Step: %8d, Batch Loss: %12.6f, " "Tokens per Sec: %8.0f, Lr: %.6f", epoch_no + 1, self.stats.steps, batch_loss, elapsed_tokens / elapsed, self.optimizer.param_groups[0]["lr"]) start = time.time() total_valid_duration = 0 start_tokens = self.stats.total_tokens # Only add complete loss of full mini-batch to epoch_loss epoch_loss += batch_loss # accumulate epoch_loss batch_loss = 0 # rest batch_loss # validate on the entire dev set if self.stats.steps % self.validation_freq == 0: valid_duration = self._validate(valid_data, epoch_no) total_valid_duration += valid_duration if self.stats.stop: break if self.stats.stop: logger.info('Training ended since minimum lr %f was reached.', self.learning_rate_min) break logger.info('Epoch %3d: total training loss %.2f', epoch_no + 1, epoch_loss) else: logger.info('Training ended after %3d epochs.', epoch_no + 1) logger.info('Best validation result (greedy) at step %8d: %6.2f %s.', self.stats.best_ckpt_iter, self.stats.best_ckpt_score, self.early_stopping_metric) self.tb_writer.close() # close Tensorboard writer
def _train_step(self, batch: Batch) -> Tensor: """ Train the model on one batch: Compute the loss. :param batch: training batch :return: loss for batch (sum) """ # reactivate training self.model.train() # get loss batch_loss, _, _, _ = self.model(return_type="loss", **vars(batch)) # sum multi-gpu losses if self.n_gpu > 1: batch_loss = batch_loss.sum() # normalize batch loss if self.normalization == "batch": normalizer = batch.nseqs elif self.normalization == "tokens": normalizer = batch.ntokens elif self.normalization == "none": normalizer = 1 else: raise NotImplementedError("Only normalize by 'batch' or 'tokens' " "or summation of loss 'none' implemented") norm_batch_loss = batch_loss / normalizer if self.n_gpu > 1: norm_batch_loss = norm_batch_loss / self.n_gpu if self.batch_multiplier > 1: norm_batch_loss = norm_batch_loss / self.batch_multiplier # accumulate gradients if self.fp16: with amp.scale_loss(norm_batch_loss, self.optimizer) as scaled_loss: scaled_loss.backward() else: norm_batch_loss.backward() # increment token counter self.stats.total_tokens += batch.ntokens return norm_batch_loss.item() def _validate(self, valid_data, epoch_no): valid_start_time = time.time() valid_score, valid_loss, valid_ppl, valid_sources, \ valid_sources_raw, valid_references, valid_hypotheses, \ valid_hypotheses_raw, valid_attention_scores = \ validate_on_data( batch_size=self.eval_batch_size, batch_class=self.batch_class, data=valid_data, eval_metric=self.eval_metric, level=self.level, model=self.model, use_cuda=self.use_cuda, max_output_length=self.max_output_length, compute_loss=True, beam_size=1, # greedy validations batch_type=self.eval_batch_type, postprocess=True, # always remove BPE for validation bpe_type=self.bpe_type, # "subword-nmt" or "sentencepiece" sacrebleu=self.sacrebleu, # sacrebleu options n_gpu=self.n_gpu ) self.tb_writer.add_scalar("valid/valid_loss", valid_loss, self.stats.steps) self.tb_writer.add_scalar("valid/valid_score", valid_score, self.stats.steps) self.tb_writer.add_scalar("valid/valid_ppl", valid_ppl, self.stats.steps) if self.early_stopping_metric == "loss": ckpt_score = valid_loss elif self.early_stopping_metric in ["ppl", "perplexity"]: ckpt_score = valid_ppl else: ckpt_score = valid_score if self.scheduler is not None \ and self.scheduler_step_at == "validation": self.scheduler.step(ckpt_score) new_best = False if self.stats.is_best(ckpt_score): self.stats.best_ckpt_score = ckpt_score self.stats.best_ckpt_iter = self.stats.steps logger.info('Hooray! New best validation result [%s]!', self.early_stopping_metric) if self.ckpt_queue.maxlen > 0: logger.info("Saving new checkpoint.") new_best = True self._save_checkpoint(new_best) elif self.save_latest_checkpoint: self._save_checkpoint(new_best) # append to validation report self._add_report(valid_score=valid_score, valid_loss=valid_loss, valid_ppl=valid_ppl, eval_metric=self.eval_metric, new_best=new_best) self._log_examples(sources_raw=[v for v in valid_sources_raw], sources=valid_sources, hypotheses_raw=valid_hypotheses_raw, hypotheses=valid_hypotheses, references=valid_references) valid_duration = time.time() - valid_start_time logger.info( 'Validation result (greedy) at epoch %3d, ' 'step %8d: %s: %6.2f, loss: %8.4f, ppl: %8.4f, ' 'duration: %.4fs', epoch_no + 1, self.stats.steps, self.eval_metric, valid_score, valid_loss, valid_ppl, valid_duration) # store validation set outputs self._store_outputs(valid_hypotheses) # store attention plots for selected valid sentences if valid_attention_scores: store_attention_plots(attentions=valid_attention_scores, targets=valid_hypotheses_raw, sources=[s for s in valid_data.src], indices=self.log_valid_sents, output_prefix="{}/att.{}".format( self.model_dir, self.stats.steps), tb_writer=self.tb_writer, steps=self.stats.steps) return valid_duration def _add_report(self, valid_score: float, valid_ppl: float, valid_loss: float, eval_metric: str, new_best: bool = False) -> None: """ Append a one-line report to validation logging file. :param valid_score: validation evaluation score [eval_metric] :param valid_ppl: validation perplexity :param valid_loss: validation loss (sum over whole validation set) :param eval_metric: evaluation metric, e.g. "bleu" :param new_best: whether this is a new best model """ current_lr = -1 # ignores other param groups for now for param_group in self.optimizer.param_groups: current_lr = param_group['lr'] if current_lr < self.learning_rate_min: self.stats.stop = True with open(self.valid_report_file, 'a') as opened_file: opened_file.write( "Steps: {}\tLoss: {:.5f}\tPPL: {:.5f}\t{}: {:.5f}\t" "LR: {:.8f}\t{}\n".format(self.stats.steps, valid_loss, valid_ppl, eval_metric, valid_score, current_lr, "*" if new_best else "")) def _log_parameters_list(self) -> None: """ Write all model parameters (name, shape) to the log. """ model_parameters = filter(lambda p: p.requires_grad, self.model.parameters()) n_params = sum([np.prod(p.size()) for p in model_parameters]) logger.info("Total params: %d", n_params) trainable_params = [ n for (n, p) in self.model.named_parameters() if p.requires_grad ] logger.debug("Trainable parameters: %s", sorted(trainable_params)) assert trainable_params def _log_examples(self, sources: List[str], hypotheses: List[str], references: List[str], sources_raw: List[List[str]] = None, hypotheses_raw: List[List[str]] = None, references_raw: List[List[str]] = None) -> None: """ Log a the first `self.log_valid_sents` sentences from given examples. :param sources: decoded sources (list of strings) :param hypotheses: decoded hypotheses (list of strings) :param references: decoded references (list of strings) :param sources_raw: raw sources (list of list of tokens) :param hypotheses_raw: raw hypotheses (list of list of tokens) :param references_raw: raw references (list of list of tokens) """ for p in self.log_valid_sents: if p >= len(sources): continue logger.info("Example #%d", p) if sources_raw is not None: logger.debug("\tRaw source: %s", sources_raw[p]) if references_raw is not None: logger.debug("\tRaw reference: %s", references_raw[p]) if hypotheses_raw is not None: logger.debug("\tRaw hypothesis: %s", hypotheses_raw[p]) logger.info("\tSource: %s", sources[p]) logger.info("\tReference: %s", references[p]) logger.info("\tHypothesis: %s", hypotheses[p]) def _store_outputs(self, hypotheses: List[str]) -> None: """ Write current validation outputs to file in `self.model_dir.` :param hypotheses: list of strings """ current_valid_output_file = "{}/{}.hyps".format(self.model_dir, self.stats.steps) with open(current_valid_output_file, 'w') as opened_file: for hyp in hypotheses: opened_file.write("{}\n".format(hyp))
[docs] class TrainStatistics: def __init__(self, steps: int = 0, stop: bool = False, total_tokens: int = 0, best_ckpt_iter: int = 0, best_ckpt_score: float = np.inf, minimize_metric: bool = True) -> None: # global update step counter self.steps = steps # stop training if this flag is True # by reaching learning rate minimum self.stop = stop # number of total tokens seen so far self.total_tokens = total_tokens # store iteration point of best ckpt self.best_ckpt_iter = best_ckpt_iter # initial values for best scores self.best_ckpt_score = best_ckpt_score # minimize or maximize score self.minimize_metric = minimize_metric
[docs] def is_best(self, score): if self.minimize_metric: is_best = score < self.best_ckpt_score else: is_best = score > self.best_ckpt_score return is_best
[docs]def train(cfg_file: str) -> None: """ Main training function. After training, also test on test data if given. :param cfg_file: path to configuration yaml file """ cfg = load_config(cfg_file) # make logger model_dir = make_model_dir(cfg["training"]["model_dir"], overwrite=cfg["training"].get( "overwrite", False)) _ = make_logger(model_dir, mode="train") # version string returned # TODO: save version number in model checkpoints # set the random seed set_seed(seed=cfg["training"].get("random_seed", 42)) # load the data train_data, dev_data, test_data, src_vocab, trg_vocab = load_data( data_cfg=cfg["data"]) # build an encoder-decoder model model = build_model(cfg["model"], src_vocab=src_vocab, trg_vocab=trg_vocab) # for training management, e.g. early stopping and model selection trainer = TrainManager(model=model, config=cfg) # store copy of original training config in model dir shutil.copy2(cfg_file, model_dir + "/config.yaml") # log all entries of config log_cfg(cfg) log_data_info(train_data=train_data, valid_data=dev_data, test_data=test_data, src_vocab=src_vocab, trg_vocab=trg_vocab) logger.info(str(model)) # store the vocabs src_vocab_file = "{}/src_vocab.txt".format(cfg["training"]["model_dir"]) src_vocab.to_file(src_vocab_file) trg_vocab_file = "{}/trg_vocab.txt".format(cfg["training"]["model_dir"]) trg_vocab.to_file(trg_vocab_file) # train the model trainer.train_and_validate(train_data=train_data, valid_data=dev_data) # predict with the best model on validation and test # (if test data is available) ckpt = "{}/{}.ckpt".format(model_dir, trainer.stats.best_ckpt_iter) output_name = "{:08d}.hyps".format(trainer.stats.best_ckpt_iter) output_path = os.path.join(model_dir, output_name) datasets_to_test = { "dev": dev_data, "test": test_data, "src_vocab": src_vocab, "trg_vocab": trg_vocab } test(cfg_file, ckpt=ckpt, output_path=output_path, datasets=datasets_to_test)
if __name__ == "__main__": parser = argparse.ArgumentParser('Joey-NMT') parser.add_argument("config", default="configs/default.yaml", type=str, help="Training configuration file (yaml).") args = parser.parse_args() train(cfg_file=args.config)